Repository of Research and Investigative Information

Repository of Research and Investigative Information

دانشگاه علوم پزشکی و خدمات بهداشتی درمانی زنجان

Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: Molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression

(2021) Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: Molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression. Journal of Reproductive Immunology. ISSN 01650378

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Polycystic ovary syndrome (PCOS) is the most common cause of ovulatory infertility. Inflammation may be involved in the pathogenesis and development of PCOS. We investigated the anti-inflammatory effect of minocycline on TNF-α, TNFR2, and TLR4 expression levels and the key features of PCOS in a mouse model. Molecular docking was performed by Molecular Operating Environment software. PCOS was induced by estradiol valerate injection (EV) (2 mg/kg/day) in 40 mice. After 28 days, the mice were divided into five groups, including control, PCOS, minocycline control, minocycline PCOS model (50 mg/kg), and letrozole PCOS (0.5 mg/kg). The Levels of FSH, LH, E2, and testosterone were determined by ELISA. H&E staining was used for histological analysis in the ovarian tissues. Docking scores were �10.35, �10.57, and �12.45 kcal/mol for TNFα, TLR-4, and TNFR2, respectively. The expression levels of TNF-α, TNFR2, and TLR4 were detected by Real-Time PCR. PCOS models exhibited acyclicity, a significant increase in E2 levels (P < 0.01), and no difference in FSH, LH, and testosterone. The expression levels of TNF-α, TNFR2, and TLR-4 significantly increased in PCOS (2.70, 7.90, and 14.83-fold, respectively). EV treatment significantly increased graafian follicles (P < 0.001) and decreased corpus luteum (CL) (P < 0.01). Minocycline treatment in PCOS led to a significant decrease in E2 (P < 0.01) and graafian follicles (P < 0.001) and a significant increase in the CL numbers (P < 0.05). Our findings showed the positive effects of minocycline on estradiol level, CL and graafian follicles counts, suggesting that minocycline might inhibit these proteins and improve ovulation in our mouse model of PCOS. © 2021

Item Type: Article
Keywords: Minocycline; PCOS; TLR-4; TNF-α; TNFR2
Divisions: Education Vice-Chancellor Department > Faculty of Medicine > Departments of Clinical Sciences > Department of Obstetrics and Gynecology
Journal or Publication Title: Journal of Reproductive Immunology
Abstract and Indexing: ISI, Scopus
Quartile : Q1
Volume: 144
Publisher: Elsevier Ireland Ltd
Identification Number: https://doi.org/10.1016/j.jri.2021.103289
ISSN: 01650378
Depositing User: خانم فائزه مظفری
URI: http://repository.zums.ac.ir/id/eprint/7940

Actions (login required)

View Item View Item